Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Di-2-pyridyl ketone 4-methyl-4-phenylthiosemicarbazone

Varughese Philip, V. Suni and M. R. Prathapachandra Kurup*

Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
Correspondence e-mail: mrp@cusat.ac.in

Received 9 August 2004
Accepted 7 October 2004
Online 11 November 2004
The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$, adopts a Z configuration about the azomethine bond and exists as the thione tautomer. The overall structure of the molecule is distributed in four different planes. An intramolecular hydrogen bond involving the pyridyl N atom and the H atom attached to the hydrazine N atom leads to the formation of a six-membered ring.

Comment

Thiosemicarbazones are an important group of multidentate ligands with potential binding sites available for a wide variety of metal ions. These thiourea derivatives find substantial applications in different facets of contemporary scientific research. Their biological activity depends on the parent aldehyde or ketone (Padhye \& Kauffman, 1985; Lukevics et al., 1995), and their potential use as antimalarial agents was first recognized with N^{4}-substituted 2-acetylpyridine thiosemicarbazones (Klayman et al., 1979). The versatile antimicrobial nature of thiosemicarbazones and their metal complexes has been the focus of our research for the past decade, with successful single-crystal X-ray diffraction studies having been conducted for many of these compounds (John et al., 2002; Sreekanth \& Kurup, 2003; Sreekanth et al., 2004; Philip et al., 2004).

The title compound, (I), is the first reported di-2-pyridyl ketone thiosemicarbazone in which the N^{4}-position of the thiosemicarbazone moiety is disubstituted. The compound is also found to exist in the cis conformation, $Z Z$. There is only one previous report of a similar di-2-pyridyl ketone N^{4}-methylthiosemicarbazone, which is monosubstituted at the N^{4}-position (Swearingen \& West, 2001) and exists in a $Z E$ conformation. Previously, we have reported a di-2-pyridyl ketone thiosemicarbazone that was also found to exist in the ZZ conformation (Usman et al., 2002), and in which the N^{4}-position forms part of a pentamethyleneimine fivemembered ring. Similar conformations are also observed when a piperidyl or hexamethyleneiminyl ring occupies the
N^{4}-position (Swearingen et al., 2002). However, there are no previous reports of a $Z Z$ conformation in mono/disubstituted thiosemicarbazones of di-2-pyridyl ketone.

A perspective view of the molecular structure of (I), along with the atom-labeling scheme, is given in Fig. 1. A $Z Z$ conformation is exhibited by the molecule, since cis configurations are adopted with respect to the $\mathrm{C} 6=\mathrm{N} 3$ and $\mathrm{C} 12-\mathrm{N} 4$ bonds. The $\mathrm{S} 1=\mathrm{C} 12-\mathrm{N} 4-\mathrm{N} 3$ torsion-angle value $\left[-5.8(3)^{\circ}\right]$ indicates that thionyl atom S 1 is positioned cis to hydrazine atom N3. The deviation between the planes of the thiosemicarbazone moiety and the coordinating pyridyl ring ($C g 2$, comprising atoms C7-C11 and N2) is smaller in (I) than in other di-2-pyridyl ketone and benzoylpyridine thiosemicarbazones; the dihedral angle between these planes is 16.98 (5) ${ }^{\circ}$ for (I), and 23.56 (9) and 28.14 (8) ${ }^{\circ}$ for di-2-pyridyl ketone N^{4}, N^{4}-(butane-1,4-diyl)thiosemicarbazone (Usman et al., 2002) and 2-benzoylpyridine N^{4}, N^{4}-(butane-1,4-diyl) thiosemicarbazone (Sreekanth \& Kurup, 2004).

The molecule of (I) consists of four fragments, viz. two planar pyridine rings ($C g 1$, comprising atoms $\mathrm{C} 1-\mathrm{C} 5$ and N 1 , and Cg2), the phenyl ring (Cg3) and the thiosemicarbazone moiety. The four different planes associated with the structure of (I) are shown in Figs. 1 and 2. The thiosemicarbazone (TSC) moiety, comprising atoms $\mathrm{N} 3, \mathrm{~N} 4, \mathrm{C} 12, \mathrm{~S} 1$ and N 5 , is almost planar, the maximum deviation being 0.0449 (15) \AA for atom N 4 , and the view along the TSC axis substantiates the nonplanar nature of the molecule. The two pyridyl rings, $C g 1$ and $C g 2$, are also planar, with maximum deviations of -0.0097 (19) and -0.012 (3) \AA for atoms C5 and C10, respectively, and are inclined at a dihedral angle of 46.09 (7) ${ }^{\circ}$. The benzene ring is planar, having an r.m.s. deviation from the mean plane of $0.006(2) \AA$, while the value of the

Figure 1
A view of the molecule of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms attached to atom C19 have an occupancy of 0.5 .

Figure 2
A view of the molecule of (I) along the thiosemicarbazone axis, with displacement ellipsoids drawn at the 10% probability level.
$\mathrm{C} 13-\mathrm{N} 5-\mathrm{C} 12=\mathrm{S} 1$ torsion angle $\left[-178.90(15)^{\circ}\right]$ implies a trans alignment of the benzene ring with respect to the thiosemicarbazone moiety. The phenyl ring is twisted significantly from the thiosemicarbazone plane, with a dihedral angle of $81.74(5)^{\circ}$ between the least-squares planes.

The thiosemicarbazone moiety adopts an extended conjugation, with electron delocalization throughout the N5/C12/ S1/N4/N3 group. The fact that the compound exists in the thione form is confirmed by the $\mathrm{N} 3-\mathrm{N} 4, \mathrm{~N} 4-\mathrm{C} 12$ and $\mathrm{C} 12=\mathrm{S} 1$ bond distances (Table 1); the $\mathrm{C} 12=\mathrm{S} 1$ bond distance is close to that expected for a $\mathrm{C}=\mathrm{S}$ double bond $(1.60 \AA$; Huheey et al., 1993). The potential resonance forms of the structure as a result of the extended conjugation are depicted in the scheme above. The N3-N4 bond distance in (I) is shorter than the corresponding distance of $1.44 \AA$ in unsubstituted thiosemicarbazides (Palenik et al., 1974). The resonance form involving pyridine ring $C g 1$ would account for the shortening of the $\mathrm{N}-\mathrm{N}$ distance through extensive electron delocalization, which suggests that canonical form (III) might exist. The net result would be a small negative charge residing on pyridine atom N 1 , which is reported to be important in terms of biological activity (Restivo \& Palenik, 1970; Gabe et al., 1969).

An intramolecular $\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2$ hydrogen bond leads to the formation of a six-membered ring comprising atoms N 2 , C7, C6, N3, N4 and H4. Some weak C $-H \cdots \pi$ interactions are also observed (Table 2). The packing arrangement of adjacent molecules in an offset fashion contributes towards minimizing any repulsive interactions of the bulky pyridyl groups.

Experimental

A solution of di-2-pyridyl ketone ($10 \mathrm{mmol}, 1.84 \mathrm{~g}$) in methanol $(5 \mathrm{ml})$ was treated with a solution of N^{4}-methyl- N^{4}-phenylthiosemicarbazide ($1.81 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol (25 ml) and refluxed for 2 h . On slow evaporation at room temperature, bright-yellow crystals of the title compound separated out. These crystals were collected, washed with methanol and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation from a methanol solution. Analysis found: C 66.11, H 4.98, N 19.94\%; calculated: C 65.70 , H 4.89, N 20.17%.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$
$M_{r}=347.44$
Triclinic, $P \overline{1}$
$a=9.3059$ (10) \AA
$b=9.4966$ (10) \AA
$c=10.5689$ (10) A
$\alpha=92.544$ (1) ${ }^{\circ}$
$\beta=99.256(1)^{\circ}$
$\gamma=104.917(1)^{\circ}$
$V=887.18$ (16) \AA^{3}
Data collection
Enraf-Nonius CAD-4
diffractometer
ω / θ scans
3316 measured reflections
3111 independent reflections
2251 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$

$$
Z=2
$$

$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2.0-25.0^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, bright yellow
$0.28 \times 0.23 \times 0.23 \mathrm{~mm}$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 10$
$k=0 \rightarrow 11$
$l=-12 \rightarrow 12$
3 standard reflections frequency: 3600 min intensity decay: 2%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.104$
$S=1.02$
3111 reflections
228 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0496 P)^{2}\right. \\
& +0.2064 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.20 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.012 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C12	$1.6685(18)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.377(2)$
N1-C5	$1.335(2)$	$\mathrm{N} 5-\mathrm{C} 13$	$1.446(2)$
N2-C7	$1.340(2)$	$\mathrm{N} 5-\mathrm{C} 19$	$1.468(2)$
N3-C6	$1.295(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.499(2)$
N3-N4	$1.361(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.487(2)$
C6-N3-N4	$120.87(15)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 7$	$127.07(16)$
N3-N4-C12	$118.72(14)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$	$112.18(16)$
C12-N5-C13	$123.01(14)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.73(15)$
C12-N5-C19	$121.59(15)$	$\mathrm{N} 5-\mathrm{C} 12-\mathrm{N} 4$	$113.74(15)$
C13-N5-C19	$115.39(15)$	$\mathrm{N} 5-\mathrm{C} 12-\mathrm{S} 1$	$123.48(13)$
N1-C5-C6	$117.68(16)$	$\mathrm{N} 4-\mathrm{C} 12-\mathrm{S} 1$	$122.77(14)$
C6-N3-N4-C12	$-174.50(17)$	$\mathrm{C} 13-\mathrm{N} 5-\mathrm{C} 12-\mathrm{S} 1$	$-178.90(15)$
N4-N3-C6-C5	$177.49(16)$	$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 12-\mathrm{S} 1$	$-5.8(3)$

Table 2
Hydrogen-bonding geometry and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\AA,^{\circ}\right)$ in (I) (for definitions, see Comment text).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2$	0.86	2.03	$2.642(2)$	128
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cg} 2^{\mathrm{i}}$	0.93	2.87	$3.487(2)$	125
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cg} 3$	0.93	3.32	$3.871(4)$	120

Symmetry code: (i) $1-x, 1-y,-z$.

H atoms were located in a difference Fourier map and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ of the parent atom $(\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$, and $\mathrm{N}-\mathrm{H}=0.86 \AA)$. The H atoms of the methyl group (C19), being disordered, were constrained geometrically over six sites (each with an occupancy factor of 0.5).

organic compounds

Data collection: CAD-4 Software (Nonius, 1996); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the National Single Crystal X-ray Diffraction Facility, IIT Bombay, India, for collecting the X-ray crystallographic data.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1079). Services for accessing these data are described at the back of the journal.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gabe, E. H., Taylor, M. R., Glusker, J. P., Minkin, J. A. \& Patterson, A. L. (1969). Acta Cryst. B25, 1620-1631.

Huheey, J. E., Keiter, E. A. \& Keiter, R. L. (1993). In Inorganic Chemistry, Principles of Structure and Reactivity, 4th ed. New York: Harper Collins College Publishers.

John, R. P., Sreekanth, A., Kurup, M. R. P. \& Mobin, S. M. (2002). Polyhedron, 21, 2515-2521.
Klayman, D. L., Bartoserich, J. F., Griffin, T. S., Manson, C. J. \& Scovill, J. P. (1979). J. Med. Chem. 22, 885-893.

Lukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. \& Popelis, J. (1995). Eur. J. Med. Chem. 30, 983986.

Nonius (1996). CAD-4 Software. Nonius BV, Delft, The Netherlands.
Padhye, S. \& Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-135.
Palenik, G. J., Rendle, D. F. \& Carter, W. S. (1974). Acta Cryst. B30, $2390-$ 2395.

Philip, V., Suni, V., Kurup, M. R. P. \& Nethaji, M. (2004). Polyhedron, 23, 12251233.

Restivo, R. \& Palenik, G. J. (1970). Acta Cryst. B26, 1397-1402.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sreekanth, A., Kala, U. L., Nayar, C. R. \& Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.
Sreekanth, A. \& Kurup, M. R. P. (2003). Polyhedron, 22, 3321-3332.
Sreekanth, A. \& Kurup, M. R. P. (2004). Polyhedron, 23, 969-978.
Swearingen, J. K., Kaminsky, W. \& West, D. X. (2002). Transition Met. Chem. 27, 724-731.
Swearingen, J. K. \& West, D. X. (2001). Transition Met. Chem. 26, 252260.

Usman, A., Razak, I. A., Chantrapromma, S., Fun, H.-K., Philip, V., Sreekanth, A. \& Kurup, M. R. P. (2002). Acta Cryst. C58, o652-o654.

